Your Donation: Our Work

Research Projects


Hijacking Cell Communication For Breast Cancer Therapy


When breast cancer has spread to other organs it is more challenging to treat. Current research, in collaboration with national and international research groups, focuses on development of new approaches to treat advanced breast cancer. Our research investigates how different cell types within a tumour communicate and send signals around the body that help the disease to spread. They aim to hijack this crosstalk to specifically kill cancer cells, while leaving healthy cells unharmed.

Latest Research: Investigating the Potential and Pitfalls of EV-Encapsulated MicroRNAs as Circulating Biomarkers of Breast Cancer (2020)

Nanoparticle-Based Delivery of Tumor Suppressor microRNA for Cancer Therapy (2020)

Cheque Presentations and headshots_9.8.22_25

Cancer Genetics

Cancer genetics research and risk assessment examines the role of heredity in the development of cancer. It is not possible to change the DNA a person is born with, but if researchers and clinicians better understand how genes play a role in breast cancer, they can take steps to alter the risk of a person developing cancer and predict how they will respond to the disease. Many people will have heard of the BRCA1 and BRCA2 genes. These account for only a small number of breast cancers. Our genetics research programme focuses on looking for new genetic variants that could increase a person’s risk of breast cancer. The hope is that this would lead to more accurate testing, placing more emphasis on preventative measures, e.g. breast screening at a younger age or prophylactic surgery (breast removal).

Latest Research: University of Galway Contribute to Significant Breast Cancer Risk Genetic Study (2021)

Clinical Breast Cancer Research

The National Breast Cancer Research Institute supports collaborative clinical research between University of Galway and the Symptomatic Breast Clinic at University Hospital Galway. This research will ensure the clinical methods for managing breast cancer will be improved for patients.

Latest Research: 

The impact of progesterone receptor negativity on oncological outcomes in oestrogen-receptor-positive breast cancer (2021)

Clinical utility of the 21-gene assay in predicting response to neoadjuvant endocrine therapy in breast cancer: A systematic review and meta-analysis (2021)

Clinicopathological correlates, oncological impact, and validation of Oncotype DX™ in a European Tertiary Referral Centre (2021) 


Engineering Breast Tissue

Many breast cancer patients have surgery and may lose part or all their breast. Breast reconstruction has been
proven to have a positive effect of on patient’s psychological wellbeing and quality of life. The two most common methods of breast reconstruction are silicone implants and muscle and fat taken from other parts of the body e.g., the back or abdomen, to recreate the breast. Our research concentrates on the feasibility of growing a new breast from a patient’s own adipose (fat) cells. Adipose tissue contains “adipose derived stem cells” (ADSCs). We are growing these cells in our lab and working with biomedical engineers to create new breast tissue that could be used to recreate the breast after mastectomy.

Latest Research: Evaluation of human adipose-derived stromal cell behaviour following exposure to Tamoxifen (2022)

Effect of Breast Cancer and Adjuvant Therapy on Adipose-Derived Stromal Cells: Implications for the Role of ADSCs in Regenerative Strategies for Breast Reconstruction (2020)

Molecular Profiling for Personalised Medicine


There are several different types of breast cancer (based on the genes the tumour cells express) and patients are treated according to their group, e.g. using chemotherapy or hormone therapy. It is crucial that for the best outcomes and reduced side effects, patients are given the right therapy for their disease. We study small biomarkers molecules called microRNAs that are found in blood and act to influence how our genes and cells work. Some microRNAs are known to be altered in breast cancer and we want to be able to detect these microRNAs so that we can monitor the molecules as patients undergo therapy or their disease progresses. Some patients undergo chemotherapy before surgery, and this is called neoadjuvant chemotherapy. As part of our research with Precision Oncology Ireland, we are examining how the chemotherapy affects the expression of these microRNAs. Ultimately, if we can identify a blood-borne biomarker (or a panel of markers) that can be used for breast cancer diagnosis, grouping or monitoring disease progression/remission, it will ensure patients will get targeted, individualised therapies and be spared side effects or unnecessary interventions. 

Latest Research: Evaluating the role of circulating microRNAs to aid therapeutic decision making for neoadjuvant chemotherapy in breast cancer – a prospective, multicenter clinical trial (2022)

Emerging Evidence of the Functional Impact of the miR379/miR656 Cluster (C14MC) in Breast Cancer (2021)

MicroRNAs in Molecular Classification and Pathogenesis of Breast Tumors (2021)


Cancer Biobank

Since 1990, the National Breast Cancer Research Institute has supported the development of a Cancer Biobank. The Cancer Biobank is a collection of clinical samples vital for researchers to investigate how cancer develops, is diagnosed and treated. Funds are essential for purchasing and maintaining equipment (-70°C freezers, software), consumables (tubes, labels), and supporting staff resources. Our research group is advancing the quality management of the Cancer Biobank with a view to ISO 20387 accreditation. Visit the Cancer Biobank webpage.

Latest Research: Harmonising the human biobanking consent process: an Irish experience (National Biobank Working Group 2021) 



Targeting The Tumour Stroma

Tumour stromal cells (TSCs) are an important group of cells that are found in breast tumours. These cells can release factors that cause cancer growth and spread (metastasis) and potentially making the tumour resistant to chemotherapy and more likely to reappear (chemoresistance). Finding a way to target these cells would be extremely useful in breast cancer treatment. We have developed a process in the lab that enables us to isolate tumour and normal stromal cells from patient breast cancer tissue, and to examine the factors that are only present in TSCs and not in normal stromal cells. This will help us develop new precision drugs that target TSCs specifically, and will reduce tumour growth, metastasis and chemoresistance.

Latest Research: Irish Research Council Funded Collaboration has Developed Novel Therapies for the Treatment of Breast Cancer (2020)


Cancer treatments can have toxic effects on the heart and cardiovascular system. Cancer Treatment Related Cardiac Dysfunction (CTRCD) has become a concern for clinicians caring for cancer patients as it can disrupt cancer treatment and negatively impact quality of life and survival.  Identifying patients at risk of developing cardiac disease prior to initiating therapy could help tailor treatment strategies to reduce the occurrence of severe cardiac effects. NBCRI is partnering with cardiology researchers at the Corrib Core Lab on interventional and quality of life research.

Latest Research: Genetic and RNA-related molecular markers of trastuzumab-chemotherapy-associated cardiotoxicity in HER2 positive breast cancer: a systematic review (2022)

genomics data Science

Research in genomics data science has rapidly advanced over the last two decades, evolving from single-gene to whole-genome screening by using genome-wide association studies and next-generation sequencing. Cancer is often described as a disease of the genome, and most tumours harbour a range of genomic alterations that influence their clinical behaviour and treatment response. Genomics data science has the power to greatly improve patient prognosis. It is widely accepted that breast cancers are mainly governed by deletions, amplifications and chromosomal rearrangements i.e. copy number alterations (CNAs), rather than mutations in a single gene. A growing body of evidence suggests that incorporating the genomic landscape of the tumour into treatment decisions is beneficial to the patient. Our research seeks to examine the CNA landscape of breast tumours and construct a statistical prognostic model to predict disease outcome. This is done by adding new information from the genomic variation observed in breast cancer tissue samples  to already utilised clinical features and tissue-based biomarkers. 

This research is conducted in partnership with the Science Foundation Ireland Centre for Training in Genomics Data Science Centre

Latest Research: Survival Outcomes are associated with genomic instability in luminal breast cancers (2021)